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Four Quantum Conservation Laws for Black Hole
Stationary Equilibrium Radiation Processes
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The classical first law of thermodynamics for a Kerr–Newman black hole (KNBH)
is generalized to a law in quantum form on the event horizon. Then four quantum
conservation laws on the KNBH equilibrium radiation process are derived. The
Bekenstein–Hawking relation 6 5 !/4 is exactly established. It can be inferred
that the classical entropy of black hole arises from the quantum entropy of field
quanta or quasiparticles inside the hole.

It has been a quarter century since Bekenstein [1] and Hawking [2] first
showed that the entropy of a black hole is one fourth of its surface area.
Despite considerable effort [3] on the quantum [4], dynamic [5], and statistical
[6] origins of black hole thermodynamics, the exact source and mechanism
of the Bekenstein–Hawking black hole entropy remain unclear [7].

By using the brick wall model, G ’t Hooft [8] identified the black hole
entropy with the entropy of a thermal gas of quantum field excitations outside
the event horizon, whereas Frolov and Novikov [4] argued that the black
hole entropy can be obtained by identifying the dynamical degrees of freedom
of a black hole with the states of all fields which are located inside the
black hole. A black hole acts as classical thermodynamic object, but its true
microscopic structure is unknown [9].

Here we first derive the thermal spectrum and microscopic entropy of
a massive complex scalar field on a Kerr–Newman black hole (KNBH)
background. From this quantum entropy, we propose a quantum first law of
black hole thermodynamics. Then we consider a system in which a KNBH
is in equilibrium with this scalar field. Using a thermodynamic method, we
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obtain four conservation laws on black hole thermal radiation equilibrium
process for energy, charge, angular momentum, and entropy, respectively.
The total quantities of these quantum numbers of the whole system are
conserved in the stationary thermal equilibrium radiation process. By identi-
fying the complex scalar field with quasiparticles excited by the hole, we
propose that the classical entropy of a black hole originates microscopically
from the entropy of quanta which constitute the hole.

The general stationary axisymmetric solution to the Einstein equation
is a rotating charged black hole (KNBH) described by three parameters: mass
M, charge Q, and specific angular momentum a 5 J/M. So we deal with a
sourceless, charged, massive scalar field with mass m and charge q on this
background in the nonextreme case (0 , « 5 !M 2 2 a2 2 Q2 # M; we use
Planck unit, G 5 " 5 c 5 kB 5 1).

In Boyer–Lindquist coordinates, a complex scalar wave function C has
a solution in variables separable form [10]

C(t, r, u, w) 5 R(r)S(u)ei(mw2vt) (1)

Here the angular wave function S(u) is an ordinary spheroidal function with
spin weight s 5 0 which satisfies the Legendre wave equation [11]:

1
sin u

u[sin u uS(u)] 1 Fl 2
m2

sin2u
2 (ka)2 sin2uGS(u) 5 0 (2)

while the radial wave function R(r) is a modified generalized spheroidal
wave function with an imaginary spin weight which satisfies the following
“modified” generalized spin-weighted spheroidal wave equation of imaginary
number order [12, 13]:

r[(r 2 r+)(r 2 r2)rR(r)] 1 [k2(r 2 r+)(r 2 r2)

1 2(Av 2 Mm2)(r 2 M ) 1
[A(r 2 M ) 1 «B]2

(r 2 r+)(r 2 r2)

1 (2v2 2 m2)(2M 2 2 Q2) 2 2qQMv 2 l]R(r) 5 0 (3)

where l is a separation constant, and r6 5 M 6 «, k2 5 v2 2 m2, A 5
2Mv 2 qQ, and «B 5 v(2M 2 2 Q2) 2 qQM 2 ma.

When considering the thermal radiation of a KNBH, we need the asymp-
totic solutions of the radial function R(r) at its event horizon r 5 r+. In fact,
the radial equation has two solutions whose indices at its regular singularity
r 5 r+ are 6iW, where W is given blew. These two asymptotic solutions are

R(r) , (r 2 r+)6iW when r → r+ (4)

According to the analytical continued method suggested by Damour and
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Ruffini [14], these two solutions differ by a extra factor e2pW. It is easy to
obtain a thermal radiation spectrum [15, 16] on the event horizon r 5 r+:

^N & 5
1

e4pW 2 1
, W 5

v 2 mV 2 qF
2k

(5)

where the surface gravity is k 5 (r+ 2 M )/!, the angular velocity is V 5
a/!, the electrical potential is F 5 Qr+/!, and the reduced horizon area is
! 5 r 2

1 1 a2.
Equation (5) demonstrates that a KNBH has an exact thermal property

characterized by a temperature T 5 k/(2p) as common blackbody radiation
does. The radiation modes of a complex scalar field are characterized by a
frequency v, a charge q, and an azimuthal quantum number m. This scalar
field is rotating with an azimuthal angular velocity V and has a chemical
potential F. The emitted scalar quanta obey Bose–Einstein statistics. Here,
we adopt Bellido’s [15] proposition that quantum number W is the quantum
entropy of scalar fields on the KNBH background. The quantum entropy
satisfies Bekenstein’s [1] first law of black hole thermodynamics:

v 5 2kW 1 mV 1 qF (6)

and we call this law as the quantum first law of black hole thermodynamics
in integral form.

When a KNBH is in thermal equilibrium with a complex scalar field at
temperature T 5 k/(2p), we could regard the hole’s surface gravity, angular
velocity, and electrical potential as external parameters that remain fixed or
at most undergo a minute change which can be neglected under our present
consideration. This assumption gives the following conditions of thermody-
namic stable equilibrium of the system on the event horizon:

kr110 5 kr120, Vr110 5 Vr120, Fr110 5 Fr120

In this thermodynamic equilibrium system, the hole still emits and
absorbs quanta although its parameters remain fixed. However, this stationary
process is a detailed balance process [17], that is, the number of quanta
emitted by the hole is equal to that absorbed by it. So the hole could preserve
its parameters unchanged. Relative to the fixed parameters of the hole, due
to vacuum polarization, the scalar field has some minute fluctuations which
can be given by differentiating the energy relation of Eq. (6). Thus, we have
the quantum first law of quantum thermodynamics in differential form:

Dv 5 2k DW 1 V Dm 1 F Dq (7)

Combining Eq. (7) with the following classical first law of black hole
thermodynamics in differential form [17],
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DM 5
k
2

D! 1 V DJ 1 F DQ (8)

one can deduce four quantum conservation laws for energy, angular momen-
tum, charge, and entropy, respectively:

DM 5 n Dv (energy) (9)

DJ 5 n Dm (angular momentum) (10)

DQ 5 n Dq (charge) (11)

D!/4 5 n DW (entropy) (12)

Here n is a multiplier needed to be determined further.
Equations (9)–(12) indicate that a KNBH has discrete increments of

energy, angular momentum, charge, and entropy. That is, when a black hole
emits particles, its energy, charge, angular momentum, and entropy are carried
away by these quanta, and vice versa. These microscopic laws are only the
reformulated detailed balance principle on stationary equilibrium process of
black hole radiation. In a stationary thermal equilibrium radiation process,
it is reasonable physically to conceive that what the hole gains the radiation
loses. Thus, the total quantities of energy, charge, angular momentum, and
entropy of the whole system remain conserved in this thermodynamic process.

However, this thermal equilibrium is in general unstable due to the
existence of statistical fluctuations [18]. A minute perturbation will result in
the hole completely evaporating to scalar field quanta or radiation quanta
being absorbed fully by the hole. In the former case, the energy, charge,
angular momentum, and entropy in the whole system will convert to those
of the scalar field, in the latter case to those of the hole. But these physical
quantities should be equal in these two extreme cases. From this, we could
infer that a black hole consists of some elementary quasiexcitations, although
at present we do not know what they really are. In this paper, we relate them
to the scalar field quanta. When considering all modes of field excitations, the
above conservation relations (9)–(12) must include summation with respect to
all possible modes of field quanta.

Further, combining Eq. (6) with integral Smarr formula [19]

M 5 k! 1 2JV 1 QF (13)

we can obtain a special quantum state nm 5 J, nv 5 M/2, nq 5 Q/2, nW 5
!/4. As quantum numbers, m, v, q, W are discrete numbers, not only the
parameters J, M, Q, !, but also DJ, DM, DQ, D! must take discrete values.
This means that a quantum KNBH can be thought of microscopically as
consisting of all possible quasiparticles inside the hole, which is identified
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by us with all possible modes of bosonic field quanta having energy 2v,
charge 2q, angular momentum m, and entropy 4W as elementary units.

In fact, Eq. (12) is a generalized second thermodynamic law in quantum
form. By integrating this equation, we obtain the quantum black hole entropy:

nW 5
1
4

! 1 C (14)

As the Bekenstein–Hawking classical black hole entropy [1, 2] is S 5
A/4 5 p!, the quantum entropy nW is equal to the reduced entropy nW 5
6 5 S/(4p), so we have the Bekenstein–Hawking relation (choose constant
C 5 0):

6 5 nW 5 !/4 (15)

Equation (15) shows that the Bekenstein–Hawking black hole entropy
is equal to the quantum entropy of a complex scalar field. On these grounds,
one can conjecture that the classical entropy of black holes originates statisti-
cally from the quantum entropy of quantized fields.

In summary, we have considered the thermodynamics of a system con-
sisting of a complex scalar field in thermal equilibrium with a Kerr–Newman
black hole. Using the thermodynamic equilibrium condition on the event
horizon, we derive four quantum conservation laws for black hole equilibrium
radiation processes. The total energy, total charge, total angular momentum,
and total entropy of the whole system are conserved in this process. By
identifying the interior structure of a KNBH with a collection of quasiparticles,
we infer that the classical entropy of a black hole originates microscopically
from the quantum entropy of quanta inside the hole. However, this is still
an open question that needs to be clarified.
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